Notes for MA591U, Spring 2001
(Symbolic Computation)

Liouville’s Theorem (Proof)

First, an overview of our approach. Let a € F and assume that [« € F(¢;,... ,ty), an
elementary extension of F. How can the ¢; enter into an expression for [ « so that they
disappear when one differentiates? We want to show that:

(i) (Ja=G(... exp,...)) = (a:---+8‘1§p-(exp)’+---)sononeWexpcanappear;
(ii)(fazG(...,lnm,...)):(a:---+%-8§%+---=---+%§'ﬁ-é+---)soany

new logs can appear only linearly in H, since they must disappear in
(iii) there is no need for algebraics.

Olnzx!?

The point of the following lemma is that it allows us to describe expressions of the form
«’/u and terms in partial fractions:

LEMMA: Let F be a differential field and F(¢) a differential extension with no new con-
stants. Assume t is not algebraic.

(i) Ift' e Fand f € Ft] such that deg f > 0, then f” is a polynomial of the same degree
as f, or one less, according to whether the highest coefficient of f is constant.

(i) Ift'/t € F, thenforany 0 # a € Fand 0 # n € Z,30 # h € F such that (at")" = ht™.
For any polynomial f € [F[t] of positive degree, f' is of the same degree, and is a multiple
of f if, and only if, it is a monomial (i.e., 3n € N such that f(¢) = at").

PROOF:
(i) Assume ¢ = b € F. Let f(t) = a,t" + - - - + ap Where a; € F. Then

Ft) = (apt"+a, "+ Fait +ag) + (napt't" ' + -+ art’)
= apt" + (napyb + al,_ )" + g(t)

where g is of degree less than n — 1. By way of contradiction, assume deg f < n — 2, then
a,, = 0and na,b+a),_, =0. So

((nant + an—1) = na,t + na,t’ +al, | =0+ nab+ a,_, =0) = (nayt + a,—1 € F)

(because F(t) introduces no new constants). But this contradicts the fact that ¢ is not
algebraic. Hence f’ is a polynomial of the same degree as f, or one less, since ¢, = 0 if
andonly ifdeg f' =n — 1.

(if) Assume that b = '/t € F. Then for any monomial at™ € F[t],

(at™) = a't" + ant™ 't' = (a’ + anb)t".



So if a’ + anb = 0, then (at™)’ = 0 and we have at™ € F, which contradicts the fact that ¢
is not algebraic over F. So (at")’ # 0 and deg f' = deg f. If f(t) = at™ —that is, if fisa
monomial — we have just seen that there must be some 0 # h € F such that f(t) = ht".

For the converse, suppose f|f. This means f' = «f for some « € F. By way
of contradiction, suppose f has two terms a,t™ and a,,t™. Then (a,t")" = «aa,t™ and
(amt™) = aan,t™. Thus
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which in turn implies that ¢ is algebraic over F. Again, we have a contradiction. Thus f|f

implies that f has no more than one terms; that is, f is a monomial.
We have now shown that the lemma is true.

and this implies that

Next we need some Galois Theory. Let Q C F and let P € F[z]. Some facts:
(1) IF(uy, ... u,) D Fwith P(u;) = 0 for each i.

(2) Given any two roots u; and u;, there is an automorphism o : F(w,... ,u,) —
F(uy, ..., u,) With o(u;) = u;.
(3) If all automorphisms o with o|pfix z € F(uy,... ,u,) then z € F.



(See Lang’s Algebra for details of why these are true.)

LEMMA: Let E be a differential field, and assume it is an algebraic extension of some field
F. If o is an automorphism of E and o(2) = o(z)’ for all z € F then o(2') = o(z)’ for all
z e K
PROOF:

Define a new derivation D on E by D(z) = 07 (c(2)’). (We omit the proof that this is a
derivation.) Note that for z € F,

D(z) =0 Yo(2)) =0 o()) = 7.

This means that on F, the derivations D and’ are the same. By the uniqueness of deriva-
tions, they must be the same on E as well, so o7 (c(2)") = 2/, which implies that o(z) =
o(2').

Now we can prove Liouville’s Theorem.
We have the elementary tower F C F(t;) C --- C F(ty,... ,tx) = E. Lety € E with
y = a € F. We want to show that
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for v, u; € F and ¢; constant in IF. We proceed by induction on N.
Applying the induction hypothesis, we can conclude that 3u;, v € F(¢; ) and ¢; constant
in F such that

/
Uu.:
/
a=v + g ci—.
- U;
K2

Write ¢ for ¢;. We consider three cases.

Case 1: t is algebraic over F.

Let P be the minimal polynomial of ¢ over F. Let Fw, = t;,ws,...,w,) be the
field generated by the roots of P. Recall that the derivation on F extends uniquely to
F(wy, ... ,w,) and any automorphism that fixes F commutes with this derivation. Fur-
thermore, any automorphism of F(w,, . .. , w,,) that fixes F is determined by its actions on
the w;. Hence, there are only a finite number of such automorphisms. Number them as
o1,...,0s Foreach j € {1,... s} we have

a=gj(a) =0 (Ul + ZQZ—i) =0i(v) + Zczi(&))/




Then
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Construct V' = %Zj oj(v) and U; = []; 0j(w;). Then for any automorphism o, we have
o(V)=Vando(U;) = U;. Hence U;,V € F.

This tells us that we do not really need any new algebraics to integrate «.
For the remaining cases, we can assume that ¢ is not algebraic. Let « € F, 4, v € F(¢) such
thata' =o' + ), czZ— We can make some assumptions:

(i) We can write each u; as a product [, ;u; ;" where each n;; € Z and each u;; is
irreducible. So
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(ia=v+>", c@Z— where the u; are monic, irreducible polynomials in ¢ over F.

(iii) v is the sum of polynomials and terms of the form ¢/f", where f is monic and
irreducible.
Case 2: (t =In(a)) = (t' = d'/a).

If fis monic and irreducible, then deg f' < deg f (see the lemma from last time) so
f" ff. Therefore u; = f implies that «;/u; is in lowest terms.

If f appears in the partial fraction expansion of v—i.e, v =---+¢q/f +---, whereris
the maximum exponent of f —then

/ !/
’:...+q__qu +
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Note that f frqf’, so in the partial fraction decomposition of v/, we have a term A/ f"+!

withr» > 1. Then
(i) f cannot appear in the denominator of v, since it could not cancel out in
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so v € F[t];
(if) f cannot be one of the v;, because neither could it cancel then.
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Soa =0+, ¢t L with u; € F and v € F[t]. Butv' € F, so v = ct + b (lemma) where ¢
is a constant and b € . Thus
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with a, b, u; € F, as desired.
Case3: (t =¢b) = (b=1t/t)forb € F.
What irreducible monic polynomials can occur in denominators? If f is a monomial,

f = t. If fis not a monomial, f /f' (by the lemma). So a similar argument as before
shows that, if f # ¢, f cannot occur in a denominator. Hence
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and u; € F, or at most one uz = t. (In any case, u’/uz elF)

Hence a = v' 4+ Y, ¢t Sincea e Fand ), ¢;=+ € F, v’ € F. Butv' = ), (aj + ia;b)t"
and a) + ia;b’ # 0,50 iy = i, = 0, and thus v € F. Hence a is of the desired form.



