
Notes for MA591U, Spring 2001
(Symbolic Computation)

The Risch Algorithm
Risch showed in 1970 that “Given an elementary function f , one can decide if

∫
f is also

elementary, and if so, find
∫
f .”

The complete proof never appeared in print. The parts that did, appeared in:
•AMS Transactions 139 May 1969 p. 167-189
•Bulletins of the AMS 76 1970 p. 605-608
•preprints

There are some problems with the question we have posed. To begin with, what do we
mean by, “given an elementary function”? We will consider several possible interpreta-
tions.

First: we can write the function down. But this is not enough.
Second: we can write down an elementary extension containing f . For example, let

f(x) =
√
xex = ex+ 1

2
lnx. Observe that f ∈ Q(x,

√
x, ex), but also f ∈ Q(x, ln x, ex+ 1

2
lnx). We

also have to make this answer more precise. We can demosntrate this problem as follows:
consider Q(x, ln x, elnx). What does elnx mean? It stands for a function whose logarithmic
derivative is

(elnx)′

elnx
=

1

x
.

But we could use, for ln x, the function as defined on R>0 , or we could use ln x+ 2nπi for
any n ∈ C . Which one do we mean to use? If we use the usual lnx, we get Q(x, ex , ln ex) =
Q(x, ex); if we use ln x+ 2πi we obtain Q(x, ex , 2πi).

Risch showed in his 1969 paper that if one does not do something to avoid the ambi-
guity, the question “Does f have an elementary integral?” is undecidable.

DEFINITION: A recursive description of an elementary extension (RDEE) E of Q(x) is the
following:

(i) a set of elements S = {α1, . . . , αm} such that the constants of E are Q(α1 , . . . , αm)
where α1, . . . , αm−1 are algebraically independent, and αm is algebraic over Q(α1 , . . . αm−1)
with a given minimal polynomial.

(ii) a set of elements T = {t1, . . . , tn} such that we know in advance which of the
following holds: let Ei = Q(α1 , . . . , αm)(x)(t1, . . . , ti−1) where x′ = 1 and

(a) ti is algebraic over E i and we have an explicit description of its minimal poly-
nomial, or
(b) ti is not algebraic over Ei and we have an element ui ∈ E i such that t′i = u′i/ui,
or
(c) ti is not algebraic over Ei and we gave ab element ui ∈ E i such that t′i/ti = u′i.
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REMARKS:
(1) Given a RDEE E , we can effectively perform the operations of +,−, ·,÷, and factoring
of polynomials over E .
(2) An elementary extension E over Q(x) can have several RDEE’s. For example, if E =
Q(x, ex), then

(i) S = ∅, T = {t1 = ex} so case (ii,b) above holds for u1 = x.
(ii) S = ∅, T = {t1 = e2x, t2 = ex} and then t′1/t1 = (2x)′ so case (ii)(c) above holds,
with t2 algebraic over E2 = Q(x)(e2x), since t22 − t1 = 0.

(3) An elementary function can belong to several different elementary extensions. For
example,

√
xex = ex+ 1

2
lnx =

√
xe2x and so√

xex ∈ Q(x)(ln x, ex+ 1
2

lnx)
.
= E 1

∈ Q(x)(
√
x, ex)

.
= E 2

∈ Q(x)(e2x ,
√
xe2x)

.
= E 3 = E 1 ∩ E 2

(4) Risch gave a procedure to do the following: given an expression for an elementary
function, construct some RDEE ofa field E containing an element corresponding to the
expression.

How does RDEE help us get around the difficulty of how to simplify ln ex? Consider
again Q(x, ex , ln ex). Set t1 = ex, u1 = x, so t′1/t1 = u′1. We can say that t2 is algebraic over
E1: t2 − x = 0.

Or again, let S = {πi}, T = {t1 = ex, t2 = ln ex} with the constants being Q(πi). We
have t′1/t1 = x′ and again t2 is algebraic over E1 with t2 − (x+ 2πi) = 0.

In other words, going by RDEE forces us to make explicit which simplification to use.

DEFINITION: A transcendental RDEE of an elementary extension E of Q(x) is an RDEE
where case (ii,a) above does not occur; that is, there are no algebraic extensions.

EXAMPLES:
(1) E1 above is a TRDEE while E2 and E 3 are not.
(2) Q(x,

√
x) has no TRDEE.

NOTATION: We write k for the algebraic closure of a field k, and k ·E for the smallest field
containing k and E .

THEOREM: (Risch, 1969 TAMS)
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Let E be an elementary extension of Q(x) with a TRDEE, and let k be its field of constants.
For every f ∈ E , one can determine in a finite number of steps if

∫
f is elementary over

E . If so, one can find v0 ∈ E , vi ∈ k · E , and ci ∈ k so that

f = v′0 +
∑
i

ci
v′i
vi
.

The algorithm has an efficient implementation (polynomial time). Risch outlined how to
extend the algorithm to RDEE’s in 1970. This, however, is much, much harder.

OPEN PROBLEMS:
(1) Given a RDEE E , determine if there is a TRDEE.
(2) “Given” an elementary function, find “the best” RDEE E containing this function.

In “An Extension of Liouville’s Theorem on Integration in Finite Terms” (SIAM Journal of
Computing, vol. 14 no. 4, 1985), Singer, Caviness, and Saunders showed that there is an
algorithm for problem (2) for certain “special” RDEE’s.

EXTENSIONS OF LIOUVILLE’S THEOREM AND RISCH’S ALGORITHM

(1) Allow ln, exp, algebraics, and the error function

erf(x)
.
=

∫
e−x

2

dx.

Singer, Caviness, and Saunders give a Liouville-type theorem in the publication listed
above, along with a partial algorithm. G. Cherry generalized this work in SIAM Journal of
Computing vol. 15 no. 1 (1986) and The Journal of Symbolic Computation vol. 1 no. 3 (1985).
P. Knowles also extended it in his Ph.D. thesis for North Carolina State University (1986),
appearing in The Journal of Symbolic Computation in 1991.
(2) Allow ln, exp, algebraics, and

dilog(x)
.
=

∫
ln x

x+ 1
dx.

J. Baddoura gave a result in this regard in Proc. Comp. and Math, edited by Kaltofen and
Watt, Springer (1989).

EXAMPLE: What does Risch do with
∫

dx
sinx+2

? In an appendix to Kaltofen’s 2000 paper
“Challenges of Symbolic Computation” Corless and Jeffrey show that Maple (for exam-
ple) produces a discontinuous antiderivative, in spite of the fact that the area under the
curve in question has no problem points. So the Risch algorithm needs modification, or
perhaps replacement, as we would like to obtain an antiderivative that evaluates correctly,
or that at least evaluates correctly on the largest possible continuous domian.
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