
Notes for MA591U, Spring 2001
(Symbolic Computation)

Linear Differential Equations (Rational Solutions of LDEs)
Let Q ⊂ C ⊂ C̃ with C̃ algebraic over C. Let L(y) = y(n) + an−1(x)y(n−1) + · · · + a0(x)y
with the ai(x) ∈ C(x).

PROPOSITION: (Bronstein, in the Journal of Symbolic Computation vol. 13 no. 4 1992)
1. Let b ∈ C(x). If L(y) = b(x) has a solution that is algebraic over C̃(x), then it has one
that is in C(x).
2. Let V be the C-vector space of solutions of L(y) = 0 in C(x), and let Ṽ be the C̃-vector
space of solutions of L(y) = 0 in C̃(x). Then any C-basis of V is a C̃-basis of Ṽ . So
dimC V = dim eC Ṽ .
3. One can decide if L(y) = b(x) has a solution in C(x), and find a basis for the solution
space of L(y) = 0 in C(x).

We omit the proof, but present an illustration of the third case for two examples:

y′ + fy = g and y′′ + fy′ + gy = 0

for any f, g ∈ Q(x).

NOTE: To decide if
∫
FeG is elementary, we need to find rational solutions of y′+G′y = F .

1. We begin with the first example. Let f, y ∈ Q(x) such that y′ + fy = g. We want to
decide if this has a solution in Q(x), and to find one if so. There are two steps.

(i) Find a denominator D for any possible solution.
(ii) Let y = Y/D, substitute, clear the denominators, and decide if the new equation

AY ′ +BY = C, with A,B,C ∈ Q[x], has a polynomial solution.
(iii) If so, solve the resulting linear system.

(1.i) Let y = Y/D be a solution, with Y =
∏

i p
ni
i where pi is irreducible in Q[x] and ni ∈ N.

We want to determine which pi can occur, and bound the ni. Fix some pi = p. Then we
can write

f =
a

pα
+ f̃ and g =

b

pβ
+ g̃

where f̃ and g̃ are partial fraction decompositions whose denominators have smaller
powers of p. We know the values of α, β, a, and b (with deg a, deg b < deg p).

Let y = q/pn + ỹ and plug it in. Consider the equation y′ + fy = g. We have(
−np′q
pn+1

+ · · ·
)

+

(
qa

pn+α
+ · · ·

)
=

b

pβ
+ · · ·
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where we have exhibited the “leading terms”.
In order to have the two sides equal, we face three possibilities here in terms of can-

cellation.
(a) α > 1 : (n+ α = β > n+ 1)⇒ (n = β − α)
(b) α = 0 : (n+ 1 = β > n+ α)⇒ (n = β − 1)
(c) α = 1 : n+ 1 = n+ α > β

If these numbers are integers, then there is a rational solution; proceed as follows. Oth-
erwise, there is no rational solution. This last possibility will also bound n for us since it
means that we have

−np′q + qa = 0

(−np′ + a)q = 0

Since q 6= 0, it must be that −np′ + a = 0, and thus n = a/p′.
Hence if p|D, we see that p must occur in the denominator of f or g, and the power of

p in D is one of β − α, β − 1, or a/p′.

EXAMPLE: Suppose y′ + (10/x)y = 0. We set f = 10/x and g = 0. Let p = x. Observe that
a = 10 and b = 0. We get a/p′ = 10/1 = 10, and sure enough y = 1/x10 is a solution to the
LDE.

(1.ii) Now write D =
∏

i p
ni
i , where the pi consist of the irreducible factors of the denom-

inators of f and g, and ni is the largest integer of {βi − αi, βi − 1, ai/p
′
i}. Let y = Y/D

where Y is a new variable. Then we have the equation(
Y

D

)′
+
F

D
· Y
D

=
G

D

where f = F/D and g = G/D. Then

Y ′

D
− Y D′

D2
+
FY

D2
=

G

D
Y ′D − Y D′ + FY = GD

Y ′D − Y (D′ + F ) = GD

which we can write as AY ′+BY = C with A,B,C ∈ Q[x]. We want polynomial solutions
to this new equation.

Write A = axα + · · ·, B = bxβ + · · ·, C = cxγ + · · ·, and Y = dxn + · · ·, where we have
exhibited the leading terms. First we want to bound n. Plug in and observe that

(nadxα+n−1 + · · · ) + (bdxβ+n + · · · ) = cxγ + · · ·
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and again we have three cases.
(a) (α + n− 1 = γ)⇒ (n = γ − α + 1)
(b) (β + n = γ)⇒ (n = γ − β)
(c) (α + n− 1 = β + n > γ)⇒ (nad+ bd = 0)⇒ (na+ b = 0)⇒ (n = −b/a)

Let n = maxZ{γ − α + 1, γ − β,−b/a}. Replace Y by anx
n + · · · + a0 where the ai are

indeterminate, and reexamine the equation AY ′ +BY = C.
Each power of x has a coefficient that is now linear in the ai. Comparing powers yields

a system of linear equations in the ai whose coefficients are in C. If we have a solution,
we obtain y; otherwise, no such y exists.

EXERCISE: Apply this to

y′ +
2

x
y =

2x2 + 4x+ 1

x2(x+ 1)2
∈ Q(x).

For sanity’s sake, use Maple (or some equivalent CAS). Show that the solution is

y =
2x2 + (1 + a0)x+ a0

x2(x+ 1)

for any a0 ∈ Q .

2. We proceed to the second example. Let f, g ∈ Q(x) so that y′′ + fy′ + gy = 0. We want
to determine if this has a solution in Q(x), and to find one if so.

We will take the same approach as before, using the same notation. Let

f =
a

pα
+ f̃ , g =

b

pβ
+ g̃, y =

a

pn
+ ỹ.

Let f denote the remainder of f after division by p. Then

y′ = −nqp
′

pn+1
+ · · · , y′′ = n(n+ 1)(p′)2q

pn+1
+ · · · ,

where we have exhibited the “leading terms”. Plug this into the equation we wish to
solve, and we have(

n(n+ 1)(p′)2q

pn+2
+ · · ·

)
+

(
− naqp′

pn+1+α
+ · · ·

)
+

(
bq

pβ+n
+ · · ·

)
= 0.

In order to have the cancellation, we must have the following four possibilities:
(a) α = 1, β ≤ 1 : n+ 2 = n+ 1 + α > n+ β
(b) α = 0, β = 2 : n+ 2 = n+ β > n+ 1 + α
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(c) α > 1, β > 2 : n+ 1 + α = n+ β > n+ 2
(d) α = 1, β = 2 : n+ 2 = n+ 1 + α = n+ β

EXAMPLE: For the fourth possibility, we have

n(n+ 1)(p′)2q − naqp′ + bq = 0.

Since q 6= 0 we have
n(n+ 1)(p′)2 − nap′ + b = 0.

This gives us an equation for n, for which there are two possibilities. We get similar
equations for the other three possibilities (a), (b) and (c).

EXAMPLE: Let
y′′ +

6

x
y′ +

6

x2
y = 0.

Observe that when we choose p = x, a = 6, α = 1, b = 6, and β = 2. Then

n(n+ 1)(p′)2 − nap′ + b = 0

n(n+ 1)− 6n+ 6 = 0

n2 − 5n+ 6 = 0

(n− 2)(n− 3) = 0

so n = 2 or n = 3.
In fact, y = 1/x2 and y = 1/x3 are solutions.

We return to the general equation. Find the maximum integer root ni. Set

y =
Y∏
i p

ni
i

.

Plug in, clear the denominators again, and we have the polynomial equation

AY ′′ +BY ′ + CY = 0

with
A = axα + · · · , B = bxβ + · · · , C = cxγ + · · · , Y = dxn + · · · .

Again we have four cases, each giving us a polynomial equation that n must satisfy. Let
n be the largest integer root, as before, and substitute y = anx

n + · · ·+ a0. Then solve for
the ai.

Note that the linear system will be homogeneous. Thus, a basis of solutions (an, . . . , a0)
gives a basis of solutions of y′′ + fy′ + gy = 0.
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