Notes for MA591U, Spring 2001
(Symbolic Computation)

Integration of Rational Functions
Suppose f/g € Q(z). We want to evaluage [ f/g.
(1) We will show that:

/g = R(z) + Zci In(xz — ;) where R(z) € C(z), o; € C
i=1
(2) We will find the smallest extension k£ O Q so that
L < . .
E =g + Zcz Inv; where vy € k(z), v; € k[z], ¢; € k.

i=1

(3) We want to find the v; quickly.

EXAMPLE:

2
/ x2—Ld$ =In(z — i) + In(x + i) = In(2? + 1).

The key to the method we typically teach in calculus for the integration of rational functions is partial
fraction decomposition (parfrac  in Maple). Given f/g € k(z), there exist irreducible, monic polynomials
P1,-..,Pm SO that

where h,q;; € k[z] and degqg;; < degp;. This decomposition is, furthermore, unique. (For a proof, see
Lang’s Algebra.)

ExXAMPLE: Consider

[ 223 — 22 + 22+ 1

== e C(x).
g x4+ 222 +1 (z)
The decomposition is
f_ -3 1 -1 1
g (x+1)2 +x+i+ (x — )2 +a:—z'

SO
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2(x1+i) +1In(z +14) + Q(ml—i) +In(z —4)
o T In(z% +1).




In general,

/ mon g
/Ez/h—i_/zz(a:i]]al)ﬂ :H+;;#+ZQMIH($—%)Zuo-i-Zcilnuo

where ug € C(z), u; € Clz].

The trouble with this method is that factoring introduces many things that we don’t really need. In the
example above, partial fraction decomposition introduced the algebraic extension 7, but we did not need it
in the final solution. Another example of this might be

n—1 n )
/Z:_ 1= Zln (a: — ej'QTT) =lIn(z" —1).
j=1

We would like an algorithm that uses as few algebraic extensions as necessary, and introduces them as late
as possible.

In 1872, Hermite made the first development in this regard: we can find vy without factoring, and
without going to extension fields.

(1) The first step is to write g in squarefree factorization: g =[], r. From the last example, z* + 222 +1,
it is straightforward to show that 2* + 222 + 1 =1 (22 + 1)%.

(2) The second step is to write

b b
i:r+_1+...+_z
g T1 Tm

where r, b; € Q[z] (the r; come from the squarefree factorization of step (1)). We obtain r by dividing f and
g. To obtain the b;, we use the fact that ged(r;, 7;) = 1 when ¢ # j. Then there exist a4, b1 such that

m
CL1’I“1+b1H’I“z: =1

1=2
so that
1 o b1 ai o b1 b2 as o o s bi
Mo n Mo n R i~

To find [ f/g, itis thus enough to find [ b;/r;.
Hermite’s idea showed how to reduce to the case where the exponent in the denominator is 1: find C, D
such that

Cr+Dr' =1
(we can do this since ged(r, ') = 1) and then

!/ !
/3:/<C7Tb+be>=/ Cb1+/DbL.
/)n'L 7‘7/ /)n'L 7‘7/7 /)n'L

The denominator of the integrand in the first term has a smaller degree than before, and the second integral
we can integrate by parts. Let w = Dband dv = 7’ /rt. We obtain

uv—/vdu: a _Di)bri_l —/ 1 EDZ;);;z_l




Observe that, again, the denominator of the new integrand has smaller degree than before. Hermite thus

showed
/i:H+/é
g T

where H € Q(z), degb < degr, and r is squarefree. We see that we can do all this without factoring, and
without leaving Q(x).

/ 9

where deg f < degg and g is squarefree. Rothstein and Trager independently solved this problem in the
1970s by showing the following.

THEOREM:
Let R(y) = Res,(f —yg’,g9) and let ¢y, ... , ¢ be the roots of R(y) in C. Let u; = ged(f — cig’, g). Then

(1) /g = Zcilnui.
i=1

(2) <k > Qand /g = Zdilnwz) = [(c; € k) = (dj € kand w; € k(z))].

PROOF:
We know, from the uniqueness of partial fractions, that 3F > Q so that

3d; € F,3w; € F(z) </§ = Zdilnwi).

What we will show is that inside of any such F, we can manipulate d; and w; until we obtain

/g :Zcilnui

with ¢; and u; as in (1) above.

Observe the following:

(1) In(a/b) = Ina — In b, so we can assume that all the w; € Flz].

(2) cln(pq) + dIn(pr) = (c+d) Inp+ cln g+ d1lnr. Hence we can assume that the w; are relatively prime.
(If w; and w; have a common factor p, factor it into its own logarithm as shown.)

(3) We can assume the w; are squarefree.

(4) We can assume the ¢; are distinct.
At this point, we claim that

/g => cilnu;



where the ¢; and u; are as above. For suppose > d; In w; satisfies (1)-(4). Thus

g = Zdlw;

Since the w; are relatively prime and squarefree, the uniqueness of partial fractions implies that none of the
terms cancel. Hence g = [[w;. Let Wy = [[,_,; w;. Then

g [Tw
and ¢’ = > w;W,;. Now,
wi = ged(0,w) = ged (f — Y diwWi,wy)
When k # 4, wi|W;, so
wi = ged (f — dywi Wi, wi) = ged (f — dy, Zwéwi,wk) = ged (f — drg’,we) -
When [ # k, consider that

ged(f —dipg',wi) = ged (X diwi Wi — di > wiWi, wy) = ged (dyw] Wy — dyw, Wy, wy)
= gcd((dl — dk)wl’I/Vl,wl) =1

(since w; squarefree implies ged(w;, w;) = 1, w; relatively prime implies ged(w;, W;), and d;, d, € F). So
wi = ged(f = dig'swn) = ged (£ — dig', [ wi) = ged(f — dug', 9).

Hence the d; appear as roots of R(y), and the w; are as given above.

Now we need to show that there are no other roots. Let ¢ be a root of R(y) in some fieldF > Q. Let
H = ged(f — ¢g’,g). Let h be an irreducible factor of H. Since H|g and h is irreducible, we have h|g. As
g = [ w; and the w; are relatively prime, 35 (h|w;). Since h|(f — cg’), we have

[h| (Z diw; Wi — cZw:Wl)} = [h| (djw;.Wj — Cw;Wj)] = (dj = o).

/ 1
3+
has f = 1and g = 23 + . Also, ged(g, ¢') = 1, so g is squarefree. We now want

R(y) =Res;(1 —y(32" +1),2° +2) = --- = 2y + 1)*(y — 1).
Here c; = —1/2and c; = 1. Then

ExAMPLE: Observe that

1 3 3
u; = ged <1+§(3x2+l),$3+x> = ged <§x2+§,x3+x> =z2+1

uy = ged(1 — (322 +1),2% + ) = ged(—32%,2° +2) =z
SO
1 1,
This was of course an easy integral to compute, as there were no extensions that we needed to make to Q,
but this is not necessarily the norm.



