Notes for MA591U, Spring 2001
(Symbolic Computation)

Differential Galois Theory

Lety™ +a,_1y™ Y+ .. +agy = f Where a;, f € k, a differential field whose constants are
algebraically closed. We want to extend the notion of a splitting field, the Galois group,
and solvability to these types of equations.

ExXAMPLES: Problems where £ = C(z) with’ : k¥ — k& such that (a + ) = o + ¥ and
(ab) = d'b+ al'.

We will consider the equation

0=L(y) = y(”) + an_ly(”_l) + -+ agy, a; € k.

We want
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We have L(y) = 0 if, and only if, Y = AY’, where A is the square matrix above.

FACT: Even the most general system Y’ = AY are equivalent, in a certain sense, to L(y) =
0.

LEMMA: Let K be a differential field with constants C. Let A € M,(K) = K"*". Let
V ={y e K"y = Ay}. ThendimcV < n.

PROOF:

Note that any (n + 1) vectors of K™ are linearly dependent over K. It suffices to show
thatifyy,...,y, € V are linearly dependent over K, then they are linearly dependent over
C. Let
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Assume (1) f; = 1 (just divide through if not) and (2) ¢ is the smallest positive integer
such that the above equation holds. Apply y — 3/ — Ay. Then we have

0= Z (flyi + fiyl) — <Z fiyz) A = Z Fly; + Z fi (Wi — Ayy)

But f| = 0, so by minimality of ¢ it must be that f; = --- = f/ = 0, which implies that
fi € C. Hence {y;} is dependent over C'.

NOTE: This is comparable to saying that a polynomial has at most » roots.

The analog to a splitting field in Differential Galois Theory is a Picard-Vessiot Extension,
which we define as follows:

DEFINITION: Suppose L(y) = 0, with coefficients in &, and there exists a differential field
K such that

(i) constants of K are the same as the constants of k;

(if) K contains v, . .., y, linearly independent solutions of L(y;) = 0;

(iii) K is the smallest differential field containing & and w4, . . ., y,.
Then K is a Picard-Vessiot Extension (PVE) and
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Note that 3™ = 37 a,;y® (where y© = y).

EXAMPLE: Letk = C(z) and L(y) = 0. Let zy € C where no denominator of L(y) vanishes.
Then there exist yy, .. ., y, linearly independent over C, and differentiable in a neighbor-
hood of z, such that L(y;) = 0. (This is the Analytic Existence Theorem.)

In general, we can show that this extension exists, but we are not presently able to con-
struct it.

We can now define the Galois Group of an LDE. Let K be a PVE for L(y) = 0. We write
Gal (/i) = {0 : K — K|o is an automorphism, () = (c(z))', olx = ¢}.

Let V = {y € K|L(y) = 0}. Observe that V' is a vector space over C. Ify € V and o €
Gal (¥ /i), then o(0) = o(L(y)) = L(o(y)), so o(y) € V as well.

Furthermore, |y is C-linear, so o restricts to a linear transformation on V. Select a
basis yi . .., y,. Then we can take o — (¢;;) € C™*". Hence Gal (¥/i) < GL,(C) (the group
of n x n invertible matrices over C).



DEFINITION: We say that X c CV is Zariski closed if it is the common zeroes of some
polynomial over C'in N variables.

EXAMPLES:
1. Let N = 1. Then {z|p;(z) = - - - = py(z) = 0} is finite, or it is all of C'.

Conversely, any finite set has X = {«o,...,an} = {z[(x —a;)--- (r —ay) =0}. So
Zariski closed sets in C'(z) are empty, finite, or all of C. Observe that N C C'is not Zariski
closed.

2. Let N = 2. The solution sets in this case are finite unions of curves p(z,y) = 0, finite
sets of points, C, and 0.

DEFINITION: A linear algebraic group is a Zariski closed subgroup of GL,(C) ¢ C*; that is,
it is a subgroup of GL,(C) defined by the vanishing of a set of polynomials in the entries
of the matrices. All previous examples are these kinds of groups.

An example of those that are not: let

GL1(C) = {cfc # 0} = C\ {0} = (C",-).

Zariski closed proper subgroups are finite and cyclic, hence of the form%/,,; for some
n € N. So consider {(\/5)" In € Z}. This is not Zariski closed, since it is neither finite, nor
BAsiC FACT: Gal (¥/x) < GL,(C) is Zariski closed.
EXAMPLE: Lety —ay = 0 forsomea € k.

Gal C GL;(C) = C*.

Either Gal = GL,(C) or Gal is finite.
The only finite subsgroups of C* are the nth roots of unity for some n € N. So

GL
Gal:{ {g:lgn=1}3neN '

GENERAL FACT: If z € K such that o(z) = z for all ¢ € K, then z € k.

To test whether Gal = {¢ : (" = 1} for some n € N, do the following.
Lety € K be asolution of y — ay = 0. Consider y"; if Gal = {¢ : (" = 1} then

a(y") = (o(y)" = (Cy)" ="y =y"

so y" € k.



Conversely, if n is the smallest nonzero integer so that i* = u € k, then K = k(J/u).
So K is an algebraic extension of k. Then Gal = {¢|¢" = 1}, since y — (y gives an auto-
morphism.

Observe thaty —ay =0only ify'/y = a. If y™ =
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So to test for a Galois group, the group is finite if there is some m such that « — mau = 0
has a rational solution. It equals {¢|¢("™ = 1} where m is the smallest such integer. It is, on
the other hand, G L, if there is no such integer.

To do this, one can modify the algorithm we explored earlier to find rational solutions
to LDEs.

EXAMPLE: .
/
— —y=0
Y 3xy
has m = 3 € Z giving a rational solution to
, m

—2y=0
Yy =39

This is also the smallest such integer.

EXAMPLE: One can homogenize ¢ = f (which has solutiony = [ f)asy” — (f'/f)y’' =0
(which has solutions y € {f fs 1}). Since the latter is homogeneous, the PVE is K =
k(1, [ f). Let o € Gal. We know that (1) = 1 and [o([ f)]' = o(([ f)) = o(f) = f. So
o(J f)and [ f differ by a constant. Hence o([ f) = [ f + ¢, for some ¢, € C. In the basis

{1, [ f} of the solution space,
1 ¢
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Hence the only algebraic subgroups are {/} and { < (1) ) lc € C} itself. We have Gal =

{1} if, and only if, [ f € k. We need to see if y" — (f'/f)y’ = 0 has a two-dimensional
solution space in k. If £ = Q(z), we can do this.

So

MAIN THEOREM OF GALOIS THEORY:



Let K be a PVE of k associated with L(y) = 0. There is a bijective correspondence between
algebraic subgroups H of Gal (K/k) and differential subfields F, with K D F D k:

{algebraic subgroups} <« {subfields}
H « K"={ycKl|o(y)=yVo c H}
Gal (X/p) = {o|o(y) =yVy €F} < F

Furthermore, H < Gal (¥/,) if, and only if, K*' is a PVE.

EXAMPLE: Again let 4/ — ay = 0 and assume Gal = GL;. We have

K=K(y) < {1
N

u
ky™) < {C¢m =1}
u N

k — Cc*
where (y™)" — may™ = 0.
We now turn to the issue of solvability.

DEFINITION: Let F' D k be differential fields. We call L a Liouvillian Extension of % if there
is a tower
F=F,> ---DF =k

such that F; = F,_(t;) where either t; is algebraic over F;_,, t; € F;_; (which implies
that ¢, = [u, for some u; € F;_;), or t/t; € F;_; (which implies that t; = ¢ “ for some
u; € Fi_q).

A differential equation is said to be Liouvillian if its PVE lies in a Liouvillian extension
of k.

THEOREM: Suppose K is the PVE of k corresponding to L(y) = 0. Let G = Gal(¥/y). It
turns out that L(y) = 0 is Liouvillian if, and only if, there is some normal subgroup H of
G with [G : H] < oo, and H solvable.

For k = Q(x), this is decidable! For n = 2, Kovacic determined this in 1978. For n > 2,
Singer published a result in the American Journal of Mathematics, in 1980.

REFERENCES:
“Direct and Inverse Problems in Differential Galois Theory”; see Singer’s homepage
(currently www.math.ncsu.edu/~singer ).

“Symbolic Analysis of D.E.” in Some Tapas of Computer Algbebra by Cohen, Cuypers,
and Steck (editors), published by Springer-Verlag.



