Notes for MA591U, Spring 2001
(Symbolic Computation)

The Risch Algorithm
Risch showed in 1970 that “Given an elementary function f, one can decide if [ f is also
elementary, and if so, find [ f.”

The complete proof never appeared in print. The parts that did, appeared in:

eAMS Transactions 139 May 1969 p. 167-189

eBulletins of the AMS 76 1970 p. 605-608

epreprints

There are some problems with the question we have posed. To begin with, what do we
mean by, “given an elementary function”? We will consider several possible interpreta-
tions.

First: we can write the function down. But this is not enough.

Second: we can write down an elementary extension containing f. For example, let
f(z) = /ze® = e"tz2n7 Observe that f € Q(z, /7, %), butalso f € Q(z,In z, e*t2'27). We
also have to make this answer more precise. We can demosntrate this problem as follows:
consider Q(z, In z, ). What does "% mean? It stands for a function whose logarithmic
derivative is

(elnx)/ 1

eln T
But we could use, for In z, the function as defined on R., or we could use In z + 2nmi for
any n. € C. Which one do we mean to use? If we use the usual In z, we get Q(z, €*,lne”) =
Q(x,e”); if we use Inz + 27 we obtain Q(z, €*, 23).
Risch showed in his 1969 paper that if one does not do something to avoid the ambi-
guity, the question “Does f have an elementary integral?” is undecidable.

DEFINITION: A recursive description of an elementary extension (RDEE) E of Q(x) is the

following:
(i) a set of elements S = {ay,...,a,,} such that the constants of E are Q(ay, ..., an)
where o, . .., a,, ;1 are algebraically independent, and «,, is algebraic over Q(cy , . . . ay,—1)

with a given minimal polynomial.
(ii) a set of elements 7" = {t,...,t,} such that we know in advance which of the

following holds: let E, = Q(ay, ..., am)(x)(t1, ..., ti—1) Where 2/ =1 and
(a) t; is algebraic over E; and we have an explicit description of its minimal poly-
nomial, or
(b) ¢; is not algebraic over E; and we have an element u; € E; such that ¢, = u}/u;,
or
(c) t; is not algebraic over E; and we gave ab element «; € E; such that ¢, /t; = u..
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REMARKS:
(1) Given a RDEE E, we can effectively perform the operations of +, —, -, +, and factoring
of polynomials over E.
(2) An elementary extension E over Q(x) can have several RDEE’s. For example, if E =
Q(x,e"), then
(i) S =0,T = {t; = ¢"} so case (ii,b) above holds for u; = .
(ii)) S =0, T = {t; = e**,t, = ¢*} and then ¢ /t; = (2z)’ so case (ii)(c) above holds,
with t, algebraic over E, = Q(z)(e?®), since t2 — t; = 0.
(3) An elementary function can belong to several different elementary extensions. For
example,

Vze®t = e*taln® — \/ze2 and so

Vze® € Qz)(lnz,e" 27 = E,

€ Q)(Va,e") =k

€ Qx)(e*,Vaer) =By =K, NE,

(4) Risch gave a procedure to do the following: given an expression for an elementary
function, construct some RDEE ofa field E containing an element corresponding to the
expression.

How does RDEE help us get around the difficulty of how to simplify Ine¢? Consider
again Q(x,e”,Ine”). Sett; = e*, u; = x, SO ¢} /t; = u}. We can say that ¢, is algebraic over
Eiitas—x=0.

Or again, let S = {wi}, T = {t; = €*,t, = Ine”} with the constants being Q(xi). We
have ¢} /t; = 2’ and again t, is algebraic over E; with ¢, — (z + 27i) = 0.

In other words, going by RDEE forces us to make explicit which simplification to use.

DEFINITION: A transcendental RDEE of an elementary extension E of QQ(x) is an RDEE
where case (ii,a) above does not occur; that is, there are no algebraic extensions.

EXAMPLES:
(1) E, above is a TRDEE while E, and E; are not.
(2) Q(z, v/z) has no TRDEE.

NOTATION: We write k for the algebraic closure of a field k, and k- E for the smallest field
containing k and E.

THEOREM: (Risch, 1969 TAMS)



Let E be an elementary extension of Q(z) with a TRDEE, and let & be its field of constants.
For every f € E, one can determine in a finite number of steps if [ f is elementary over
E. If so,onecanfind vy € E, v; € k- E, and ¢; € k so that

/
V.
f=uv,+ E ci—.
— U
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The algorithm has an efficient implementation (polynomial time). Risch outlined how to
extend the algorithm to RDEE’s in 1970. This, however, is much, much harder.

OPEN PROBLEMS:
(1) Given a RDEE E, determine if there is a TRDEE.
(2) “Given” an elementary function, find “the best” RDEE E containing this function.

In “An Extension of Liouville’s Theorem on Integration in Finite Terms” (SIAM Journal of
Computing, vol. 14 no. 4, 1985), Singer, Caviness, and Saunders showed that there is an
algorithm for problem (2) for certain “special” RDEE’s.

EXTENSIONS OF LIOUVILLE’S THEOREM AND RISCH’S ALGORITHM
(1) Allow In, exp, algebraics, and the error function

erf(z) = /e“de.

Singer, Caviness, and Saunders give a Liouville-type theorem in the publication listed
above, along with a partial algorithm. G. Cherry generalized this work in SIAM Journal of
Computing vol. 15 no. 1 (1986) and The Journal of Symbolic Computation vol. 1 no. 3 (1985).
P. Knowles also extended it in his Ph.D. thesis for North Carolina State University (1986),
appearing in The Journal of Symbolic Computation in 1991.

(2) Allow In, exp, algebraics, and

dilog(a:)i/ e,

.
z+1

J. Baddoura gave a result in this regard in Proc. Comp. and Math, edited by Kaltofen and
Watt, Springer (1989).

ExAMPLE: What does Risch do with [ sindT$+2? In an appendix to Kaltofen’s 2000 paper
“Challenges of Symbolic Computation” Corless and Jeffrey show that Maple (for exam-
ple) produces a discontinuous antiderivative, in spite of the fact that the area under the
curve in question has no problem points. So the Risch algorithm needs modification, or
perhaps replacement, as we would like to obtain an antiderivative that evaluates correctly,
or that at least evaluates correctly on the largest possible continuous domian.



