
Notes for MA591U, Spring 2001
(Symbolic Computation)

Liouville’s Theorem (Applications)
Consider

∫
feg where f, g ∈ C (x).

LEMMA: If g ∈ C (x)\C , then eg is not algebraic over C (x); that is, ¬∃y that is algebraic
over C (x) such that y′ = g′y.
PROOF:

By way of contradiction, we will assume there is some such y satisfying y′ = g′y, and
pick it. Let yn+ an−1y

n−1 + · · ·+ a0 = 0 where the polynomial is irreducible over C (x) and
the ai ∈ C (x). Differentiate this equation:

0 = nyn−1y′ + a′n−1y
n−1 + an−1(n− 1)yn−1y′ + · · ·

= ng′yn + (a′n−1 + (n− 1)an−1g
′)yn−1 + · · ·

Since the previous polynomial was irreducible, this new polynomial must be a multiple
of that one:

ng′yn + (a′n−1 + (n− 1)an−1g
′)yn−1 + · · ·+ a′0 = ng′(yn + an−1y

n−1 + · · ·+ a0)

so ng′a0 = a′0; that is,

a′0
a0

= ng′.

Now, can one have such a relationship with a0 in C (x)? The answer is NO. Write

a0 =
∏
i

(x− αi)ni ∃αi ∈ C , ni ∈ Z.

So

a′0
a0

=
∑
i

ni
x− αi

.

Write

g = h+
∑
i

∑
j

dij
(x− βi)j

and we have

g′ = h′ +
∑
i

∑
j

−jdij
(x− βi)j+1

.

1



Consider again the relation a′0
a0

= ng′. On the left, we have only terms of the form c
x−α ; on

the right, we have no such terms, unless g ∈ C . This contradicts the assumption.

PROPOSITION: Let f, g ∈ C (x) with f 6= 0 and g 6∈ C . Then feg has an elementary
antiderivative if, and only if, ∃a ∈ C (x) such that f = a′ + ag′, in which case

∫
feg = aeg.

PROOF:
One direction is easy: if such an a exists then

∫
feg =

∫
(a′ + ag′)eg = aeg.

Let t = eg and F = C (x). Note that t is not algebraic over F by the lemma above. So
feg = ft ∈ F[t]. Suppose ft has an elementary integral. Then Liouville’s Theorem implies
that

ft = v′ +
∑

ci
u′i
ui

with vi, ui ∈ F(t) and ci constant. We can assume that ui ∈ F[t], and that they are distinct,
monic, and irreducible (use the same arguments as in the prequel). In the proof of Liou-
ville’s Theorem, case 3, we gave an argument that we can use here to show that all the
ui ∈ F, except possibly one, say, u1 = t. So

ft = v′ + c1
t′

t
+
∑

ci
u′i
ui

= v′ + c1g
′ +
∑

ci
u′i
ui

Observe that c1g′+
∑
ci
u′i
ui
∈ F. Using the technical lemma from a few days back, one then

shows that ∃bo, b1 ∈ F such that v = b0 + b1t. Set h = c1g
′ +
∑
ci
u′i
ui

and we have

ft = (b0 + b1t)
′ + h

= b′0 + (b′1 + g′b1)t+ h

Comparing the coefficients of t, we have f = b′1 + g′b1. Let a = b1 and we are done.

EXAMPLE:
∫
ex

2 has no elementary expression.
Using the notation of the proposition, f = 1 and g = x2. We want to know if there

exists some a ∈ C (x) with a′ + 2xa = 1. Write

a = h(x) +
∑
i

∑
j

dij
(x− αi)j

so

a′ = h′(x) +
∑
i

∑
j

−jdij
(x− αi)j+1

.
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Fix α = αi and let n be the largest power of x−α in the denominator of a. Then (x−α)n+1

appears in the denominator of a′ but not in the denominator of a, so that we cannot cancel
and thereby obtain a′ + 2xa = 1. Hence a = h(x) ∈ C (x). Then we have xdeg h in a but not
in a′, and again we cannot cancel to obtain 1. So no such a exists, and hence

∫
ex

2 has no
elementary expression.

REMARK: Given f, g ∈ Q(x), one can always decide if there is an a ∈ C (x) with a′ + ag′ =
f , and if there is, one can find it. We will come back to this question later.
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