
Notes for MA591U, Spring 2001
(Symbolic Computation)

Integration of Rational Functions
Suppose f/g ∈ Q(x). We want to evaluage

∫
f/g.

(1) We will show that:∫
f

g
= R(x) +

m∑
i=1

ci ln(x− αi) where R(x) ∈ C (x), αi ∈ C ;

(2) We will find the smallest extension k ⊃ Q so that∫
f

g
= v0 +

m∑
i=1

ci ln vi where v0 ∈ k(x), vi ∈ k[x], ci ∈ k.

(3) We want to find the vi quickly.

EXAMPLE: ∫
2x

x2 + 1
dx = ln(x− i) + ln(x+ i) = ln(x2 + 1).

The key to the method we typically teach in calculus for the integration of rational functions is partial
fraction decomposition (parfrac in Maple). Given f/g ∈ k(x), there exist irreducible, monic polynomials
p1, . . . , pm so that

f

g
= h(x) +

m∑
i=1

ni∑
j=1

qij
pi

where h, qij ∈ k[x] and deg qij < deg pi. This decomposition is, furthermore, unique. (For a proof, see
Lang’s Algebra.)

EXAMPLE: Consider

f

g
=

2x3 − x2 + 2x+ 1

x4 + 2x2 + 1
∈ C (x).

The decomposition is

f

g
=

− 1
2

(x+ i)2
+

1

x+ i
+

− 1
2

(x− i)2
+

1

x− i

so ∫
f

g
= − 1

2

∫
dx

(x+i)2 +
∫

dx
(x+i) −

1
2

∫
dx

(x−i)2 +
∫

dx
x−i

= 1
2(x+i) + ln(x+ i) + 1

2(x−i) + ln(x− i)
= x

x2+1 + ln(x2 + 1).
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In general,∫
f

g
=

∫
h+

∫ ∑∑ qij
(x− αi)j

= H +
m∑
i=1

ni∑
j=2

qij
(x− αi)j−1

+
∑

qi1 ln(x− αi) = u0 +
∑

ci lnu0

where u0 ∈ C (x), ui ∈ C [x].
The trouble with this method is that factoring introduces many things that we don’t really need. In the

example above, partial fraction decomposition introduced the algebraic extension i, but we did not need it
in the final solution. Another example of this might be∫

nxn−1

xn − 1
=

n∑
j=1

ln
(
x− ej· 2πin

)
= ln(xn − 1).

We would like an algorithm that uses as few algebraic extensions as necessary, and introduces them as late
as possible.

In 1872, Hermite made the first development in this regard: we can find u0 without factoring, and
without going to extension fields.

(1) The first step is to write g in squarefree factorization: g =
∏m
i=1 r

i
i . From the last example, x4+2x2+1,

it is straightforward to show that x4 + 2x2 + 1 = 1 · (x2 + 1)2.
(2) The second step is to write

f

g
= r +

b1
r1

+ · · ·+ bm
rmm

where r, bi ∈ Q[x] (the ri come from the squarefree factorization of step (1)). We obtain r by dividing f and
g. To obtain the bi, we use the fact that gcd(ri, rj) = 1 when i 6= j. Then there exist a1, b1 such that

a1r1 + b1

m∏
i=2

rii = 1

so that

1∏m
i=1 r

i
i

=
b1
r1

+
a1∏m
i=2 r

i
i

=
b1
r1

+
b2
r2
2

+
a2∏m
i=3 r

i
i

= · · · =
m∑
i=1

bi
rii
.

To find
∫
f/g, it is thus enough to find

∫
bi/ri.

Hermite’s idea showed how to reduce to the case where the exponent in the denominator is 1: find C,D
such that

Cr +Dr′ = 1

(we can do this since gcd(r, r′) = 1) and then∫
b

ri
=

∫ (
Crb

ri
+
Dr′b

ri

)
=

∫
Cb

ri−1
+

∫
Db

r′

ri
.

The denominator of the integrand in the first term has a smaller degree than before, and the second integral
we can integrate by parts. Let u = Db and dv = r′/ri. We obtain

uv −
∫
vdu =

Db

(1− i)ri−1
−
∫

(Db)
′

(1− i)Ri−1
.
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Observe that, again, the denominator of the new integrand has smaller degree than before. Hermite thus
showed ∫

f

g
= H +

∫
b

r

where H ∈ Q(x), deg b < deg r, and r is squarefree. We see that we can do all this without factoring, and
without leaving Q(x).

We have now reduced the problem to ∫
f

g

where deg f < deg g and g is squarefree. Rothstein and Trager independently solved this problem in the
1970s by showing the following.

THEOREM:
Let R(y) = Resx(f − yg′, g) and let c1, . . . , ct be the roots of R(y) in C . Let ui = gcd(f − cig′, g). Then

(1)

∫
f

g
=

t∑
i=1

ci lnui.

(2)

(
k ⊃ Q and

∫
f

g
=
∑

di lnwi

)
⇒ [(ci ∈ k)⇒ (dj ∈ k and wi ∈ k(x))] .

PROOF:
We know, from the uniqueness of partial fractions, that ∃F ⊃ Q so that

∃di ∈ F, ∃wi ∈ F(x)

(∫
f

g
=
∑

di lnwi

)
.

What we will show is that inside of any such F, we can manipulate di and wi until we obtain∫
f

g
=
∑

ci lnui

with ci and ui as in (1) above.
Observe the following:
(1) ln(a/b) = ln a− ln b, so we can assume that all the wi ∈ F[x].
(2) c ln(pq) + d ln(pr) = (c+ d) ln p+ c ln q+ d ln r. Hence we can assume that the wi are relatively prime.

(If wi and wj have a common factor p, factor it into its own logarithm as shown.)
(3) We can assume the wi are squarefree.
(4) We can assume the ci are distinct.

At this point, we claim that ∫
f

g
=
∑

ci lnui

3



where the ci and ui are as above. For suppose
∑
di lnwi satisfies (1)-(4). Thus

f

g
=
∑

diw
′
i.

Since the wi are relatively prime and squarefree, the uniqueness of partial fractions implies that none of the
terms cancel. Hence g =

∏
wi. Let WI =

∏
j 6=i wj . Then

f

g
=

∑
diw
′
iWi∏
wi

and g′ =
∑
w′iWi. Now,

wk = gcd(0, wk) = gcd
(
f −

∑
diw
′
iWi, wk

)
.

When k 6= i, wk|Wi, so

wk = gcd (f − dkw′kWk, wk) = gcd
(
f − dk

∑
w′iWi, wk

)
= gcd (f − dkg′, wk) .

When l 6= k, consider that

gcd(f − dkg′, wl) = gcd (
∑
diw
′
iWi − dk

∑
w′iWi, wl) = gcd (dlw

′
lWl − dkw′lWl, wl)

= gcd((dl − dk)w′lWl, wl) = 1

(since wl squarefree implies gcd(w′l, wl) = 1, wl relatively prime implies gcd(wl,Wl), and dl, dk ∈ F). So

wk = gcd(f − dkg′, wk) = gcd
(
f − dkg′,

∏
wi
)

= gcd(f − dkg′, g).

Hence the di appear as roots of R(y), and the wi are as given above.
Now we need to show that there are no other roots. Let c be a root of R(y) in some field F̃ ⊃ Q. Let

H = gcd(f − cg′, g). Let h be an irreducible factor of H . Since H|g and h is irreducible, we have h|g. As
g =

∏
wi and the wi are relatively prime, ∃j (h|wi). Since h|(f − cg′), we have[

h|
(∑

diw
′
iWi − c

∑
w′iWi

)]
⇒
[
h|
(
djw

′
jWj − cw′jWj

)]
⇒ (dj = c) .

EXAMPLE: Observe that ∫
1

x3 + x

has f = 1 and g = x3 + x. Also, gcd(g, g′) = 1, so g is squarefree. We now want

R(y) = Resx(1− y(3x2 + 1), x3 + x) = · · · = (2y + 1)2(y − 1).

Here c1 = −1/2 and c2 = 1. Then

u1 = gcd

(
1 +

1

2
(3x2 + 1), x3 + x

)
= gcd

(
3

2
x2 +

3

2
, x3 + x

)
= x2 + 1

u2 = gcd(1− (3x2 + 1), x3 + x) = gcd(−3x2, x3 + x) = x

so ∫
1

x3 + x
= −1

2
ln(x2 + 1) + lnx.

This was of course an easy integral to compute, as there were no extensions that we needed to make to Q,
but this is not necessarily the norm.
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