
Notes for MA591U, Spring 2001
(Symbolic Computation)

Liouville’s Theorem (Proof)
First, an overview of our approach. Let α ∈ F and assume that

∫
α ∈ F(t1 , . . . , tN), an

elementary extension of F. How can the ti enter into an expression for
∫
α so that they

disappear when one differentiates? We want to show that:
(i)
(∫

α = G(. . . , exp, . . . )
)
⇒
(
α = · · ·+ ∂G

∂ exp
· (exp)′ + · · ·

)
so no new exp can appear;

(ii)
(∫

α = G(. . . , lnx, . . . )
)
⇒
(
α = · · ·+ ∂H

∂ lnx
· ∂ lnx

∂x
+ · · · = · · ·+ ∂H

∂ lnx
· 1
x

+ · · ·
)

so any
new logs can appear only linearly in H , since they must disappear in ∂H

∂ lnx
;

(iii) there is no need for algebraics.

The point of the following lemma is that it allows us to describe expressions of the form
u′/u and terms in partial fractions:

LEMMA: Let F be a differential field and F(t) a differential extension with no new con-
stants. Assume t is not algebraic.

(i) If t′ ∈ F and f ∈ F[t] such that deg f > 0, then f ′ is a polynomial of the same degree
as f , or one less, according to whether the highest coefficient of f is constant.

(ii) If t′/t ∈ F, then for any 0 6= a ∈ F and 0 6= n ∈ Z, ∃0 6= h ∈ F such that (atn)′ = htn.
For any polynomial f ∈ F[t] of positive degree, f′ is of the same degree, and is a multiple
of f if, and only if, it is a monomial (i.e., ∃n ∈ N such that f(t) = atn).
PROOF:

(i) Assume t′ = b ∈ F. Let f(t) = ant
n + · · ·+ a0 where ai ∈ F. Then

f ′(t) =
(
a′nt

n + a′n−1t
n−1 + · · ·+ a′1t+ a′0

)
+
(
nant

′tn−1 + · · ·+ a1t
′)

= a′nt
n + (nanb+ a′n−1t)t

n−1 + g(t)

where g is of degree less than n− 1. By way of contradiction, assume deg f′ ≤ n− 2, then
a′n = 0 and nanb+ a′n−1 = 0. So(

(nant+ an−1)′ = na′nt+ nant
′ + a′n−1 = 0 + nanb+ a′n−1 = 0

)
⇒ (nant+ an−1 ∈ F)

(because F(t) introduces no new constants). But this contradicts the fact that t is not
algebraic. Hence f ′ is a polynomial of the same degree as f , or one less, since a′n = 0 if
and only if deg f ′ = n− 1.

(ii) Assume that b = t′/t ∈ F. Then for any monomial atn ∈ F[t],

(atn)′ = a′tn + antn−1t′ = (a′ + anb)tn.
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So if a′ + anb = 0, then (atn)′ = 0 and we have atn ∈ F, which contradicts the fact that t
is not algebraic over F. So (atn)′ 6= 0 and deg f ′ = deg f . If f(t) = atn – that is, if f is a
monomial – we have just seen that there must be some 0 6= h ∈ F such that f′(t) = htn.

For the converse, suppose f |f′. This means f ′ = αf for some α ∈ F. By way
of contradiction, suppose f has two terms antn and amt

m. Then (ant
n)′ = αant

n and
(amt

m)′ = αamt
m. Thus

(ant
n)′

antn
=

(amt
m)′

amtm

a′n + nanb

an
=

a′m + amb

am
a′n
an

+ n
t′

t
=

a′m
am

+m
t′

t

So (
antn

amtm

)′
antn

amtm

=

(antn)′·amtm−antn·(amtm)′

(amtm)2

antn

amtm

=
(a′n + nanb) amt

m+n − (a′m +mamb) ant
m+n

antnamtm

=
(a′n + nanb) amt

m+n

anamtm+n
− (a′m + mamb) ant

m+n

anamtm+n

=
a′n + nann

an
− a′m +mamb

am
= 0

and this implies that [(
ant

n

amtm

)′
= 0

]
⇒
(
ant

n

amtm
∈ F
)

which in turn implies that t is algebraic over F. Again, we have a contradiction. Thus f |f′
implies that f has no more than one terms; that is, f is a monomial.

We have now shown that the lemma is true.

Next we need some Galois Theory. Let Q ⊂ F and let P ∈ F[x]. Some facts:
(1) ∃F(u1 , . . . un) ⊃ F with P (ui) = 0 for each i.
(2) Given any two roots ui and uj , there is an automorphism σ : F(u1 , . . . , un) →

F(u1 , . . . , un) with σ(uj) = uj.
(3) If all automorphisms σ with σ|Ffix z ∈ F(u1 , . . . , un) then z ∈ F.

2



(See Lang’s Algebra for details of why these are true.)

LEMMA: Let E be a differential field, and assume it is an algebraic extension of some field
F. If σ is an automorphism of E and σ(z′) = σ(z)′ for all z ∈ F then σ(z′) = σ(z)′ for all
z ∈ E .
PROOF:

Define a new derivation D on E by D(z) = σ−1(σ(z)′). (We omit the proof that this is a
derivation.) Note that for z ∈ F,

D(z) = σ−1(σ(z)′) = σ−1(σ(z′)) = z′.

This means that on F, the derivations D and ′ are the same. By the uniqueness of deriva-
tions, they must be the same on E as well, so σ−1(σ(z)′) = z′, which implies that σ(z)′ =
σ(z′).

Now we can prove Liouville’s Theorem.
We have the elementary tower F ⊂ F(t1) ⊂ · · · ⊂ F(t1 , . . . , tN) = E . Let y ∈ E with

y′ = α ∈ F. We want to show that

α = v′ +
∑
i

ci
u′i
ui

for v, ui ∈ F and ci constant in F. We proceed by induction on N .
Applying the induction hypothesis, we can conclude that ∃ui, v ∈ F(t1) and ci constant

in F such that

α = v′ +
∑
i

ci
u′i
ui
.

Write t for t1. We consider three cases.
Case 1: t is algebraic over F.

Let P be the minimal polynomial of t over F. Let F(w1 = t1, w2, . . . , wm) be the
field generated by the roots of P . Recall that the derivation on F extends uniquely to
F(w1 , . . . , wm) and any automorphism that fixes F commutes with this derivation. Fur-
thermore, any automorphism of F(w1 , . . . , wm) that fixes F is determined by its actions on
the wi. Hence, there are only a finite number of such automorphisms. Number them as
σ1, . . . , σs. For each j ∈ {1, . . . , s} we have

α = σj(α) = σj

(
v′ +

∑
i

ci
u′i
ui

)
= σj(v)′ +

∑
i

ci
σ(ui)

′

σ(ui)
.
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Then

α =
1

s

[∑
j

σj(v)′ +
∑
i

ci
∑
j

σj(ui)
′

σj(ui)

]

=
1

s

(∑
j

σj(v)

)′
+
∑
i

ci

(∏
j σj(ui)

)′∏
j σj(ui)

 .
Construct V = 1

s

∑
j σj(v) and Ui =

∏
j σj(ui). Then for any automorphism σ, we have

σ(V ) = V and σ(Ui) = Ui. Hence Ui, V ∈ F.
This tells us that we do not really need any new algebraics to integrate α.

For the remaining cases, we can assume that t is not algebraic. Let α ∈ F, ui, v ∈ F(t) such
that α′ = v′ +

∑
i ci

u′i
ui

. We can make some assumptions:
(i) We can write each ui as a product

∏
i,j u

ni,j
i,j where each ni,j ∈ Z and each ui,j is

irreducible. So

u′i
ui

=
∑
j

ni,j
u′i,j
ui,j

.

(ii) α = v′ +
∑

i ci
u′i
ui

where the ui are monic, irreducible polynomials in t over F.
(iii) v is the sum of polynomials and terms of the form q/fr, where f is monic and

irreducible.
Case 2: (t = ln(a))⇒ (t′ = a′/a).

If f is monic and irreducible, then deg f′ < deg f (see the lemma from last time) so
f ′ 6 |f . Therefore ui = f implies that u′i/ui is in lowest terms.

If f appears in the partial fraction expansion of v – i.e., v = · · ·+ q/fr + · · ·, where r is
the maximum exponent of f – then

v′ = · · ·+ q′

f r
− rqf ′

f r+1
+ · · · .

Note that f 6 |rqf ′, so in the partial fraction decomposition of r′, we have a term A/fr+1

with r ≥ 1. Then
(i) f cannot appear in the denominator of v, since it could not cancel out in

v′ +
∑
i

ci
u′i
ui

= α ∈ F

so v ∈ F[t];
(ii) f cannot be one of the ui, because neither could it cancel then.
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So α = v′ +
∑

i ci
u′i
ui

with ui ∈ F and v ∈ F[t]. But v′ ∈ F, so v = ct+ b (lemma) where c
is a constant and b ∈ F. Thus

α = (ct+ b)′ +
∑
i

ci
u′i
ui

= c
a′

a
+ b′ +

∑
i

ci
u′i
ui

= b′ + c
a′

a
+
∑
i

ci
u′i
ui

with a, b, ui ∈ F, as desired.
Case 3:

(
t = eb

)
⇒ (b = t′/t) for b ∈ F.

What irreducible monic polynomials can occur in denominators? If f is a monomial,
f = t. If f is not a monomial, f 6 |f ′ (by the lemma). So a similar argument as before
shows that, if f 6= t, f cannot occur in a denominator. Hence

v =
∑

i0≤i≤i1

ait
i

and ui ∈ F, or at most one ui = t. (In any case, u′i/ui ∈ F.)
Hence α = v′ +

∑
i ci

u′i
ui

. Since α ∈ F and
∑

i ci
u′i
ui
∈ F, v′ ∈ F. But v′ =

∑
i(a
′
i + iaib

′)ti

and a′i + iaib
′ 6= 0, so i0 = i1 = 0, and thus v ∈ F. Hence α is of the desired form.
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