
Notes for MA591U, Spring 2001
(Symbolic Computation)

Galois Theory of Polynomials
NOTATION: I use the following notation in these notes. The conventions come from
various algebra texts.

(1) ι indicates the identity function, or the identity permutation, depending on the
context.

(2) (1), (1 2), (1 3 2) denote permutations according to cyclic form.
(3) H < G means “H is a subgroup of G.”
(4) N CG means “N is a normal subgroup of G.”
(5) Sn indicates the group of permutations of n objects.
(6) A permutation σ is even if σ

(∏
i<j(xi − xj)

)
=
∏

i<j(xi − xj).
(6)An indicates the group of even permutations of n objects; e.g., (σ ∈ An)⇒ (σ(α1 − α2) = σ(α2 − α1

Let f ∈ Q[x] be squarefree. We want to study the “symmetries” of the roots.
Given f , there is a splitting field k = Q(α1 , . . . , αn) that is the smallest field that contains

all the roots of f . Symmetries of the roots of f are automorphisms of k over Q , say

Gal
(
k/Q
) .

= {ϕ|ϕ k → k is a bijective ring homomorphism and ϕ|Q= ι} .

We also refer to this set as Gal(f).

FACTS:
1. In fact, Gal

(
k/Q
)

is a group under composition.
2. For any ϕ ∈ Gal

(
k/Q
)

and any root αi of f ,

0 = ϕ(0) = ϕ(f(αi)) = f(ϕ(αi)),

so ϕ(αi) is also a root of f . Hence ϕ is a permutation of the roots of f . Thus

Gal(f) < Sn.

DEFINITION: We say that f is reducible over a field k when it factors as f(x) = (x−α1)(x−
α2) with α1, α2 ∈ k. If f is not reducible over k, we say it is irreducible over k.

GENERAL FACT: If f is irreducible over Q and its splitting field is k = Q(α1 , . . . , αn), then
for any i ∈ {1, . . . , n}, there exists some ϕ ∈ Gal

(
k/Q
)

such that ϕ(α1) = αi.

EXAMPLES:
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1. Let f(x) = x2 + ax+ b ∈ Q[x].
Suppose f is reducible over k. The splitting field of f is k = Q(α1 , α2) = Q. Hence

Gal(f) = {ι}, since there are no roots outside of Q to permute.
Now assume f is irreducible over Q . Then we know from the general fact above that

(1 2) ∈ Gal(f) < S2. This tells us that Gal(f) = S2 = {(1), (1 2)}.
2. Let f(x) = x3 +ax+ b ∈ Q[x]. (As we will indicate later, we can actually write any cubic
in this form.)

If f is reducible over Q, it has a factor of degree one, and so it has a root in Q : f(x) =
(x−α1) · g(x) where α1 ∈ Q and g ∈ Q[x] is quadratic. Then the splitting field of f will be
the same as the splitting field of g; that is,

Gal(f) = Gal(g) ∈ {{ι} , S3} .

If f is irreducible over Q, let k = Q(α1 , α2, α3) be its splitting field. Then

Gal(f) < S3 = {(1), (1 2), (1 3), (2 3), (1 2 3), (1 3 2)} .

Since f is irreducible, ∃ϕi ∈ Gal(f) such that ϕ1(α1) = α2 and ϕ2(α1) = (α3) and ϕ3(α2) =
α3. The only permutations that contain enough subgroups to satisfy this are S3 or A3 =
{(1), (1 2 3), (1 3 2)}, which are both “cyclic”.

How do we tell which is the Galois group of a particular f? We take a brief excursion
into symmetric functions.

DEFINITION: Given f(x1, . . . , xn) and π ∈ Sn, we define fπ(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)).

EXAMPLE: Let f(x) = x2
1 + x2 and π = (1 2). Then fπ(x) = x2

2 + x1.

THEOREM: If f = fπ for every π ∈ Sn, then we can write f as a polynomial in

s0 = 1 s1 =
∑
i

xi s2 =
∑
i<j

xixj s3 =
∑
i<j<k

xixjxk · · · sn = x1 · · ·xn.

PROOF:
See Cox, Little, O’Shea’s Ideals, Varieties, and Algorithms. Their proof uses Gröbner

bases.

FACT: If we define the si on the roots αi of a monic polynomial f , then

f(x) =
n∑
i=0

(−1)isix
n−i.

(Simply multiply out f(x) =
∏

i(x− αi) to demonstrate this.)
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EXAMPLES:
1. (x1 − x2)2 = x2

1 − 2x1x2 + x2
2 = (x1 + x2)2 − 4x1x2 = s2

1 − 4s2.
2. [(x1 − x2)(x1 − x3)(x2 − x3)]2 = s2

1s
2
2 − 4s3

2 − 4s3
1s2 − 27s2

3 + 18s1s2s3.

Returning to the irreducible cubic f , let α1, α2, α3 be the roots of f . We want to decide if
Gal(f) = S3 or Gal(f) = A3. Consider δ = (α1 − α2)(α1 − α3)(α2 − α3) and set ∆ = δ2.
From the fact immediately above, we know that given our f , a = α1α2 + α1α3 + α2α3

and b = −α1α2α3 while 0 = −(α1 + α2 + α3). The second example tells us then that
∆ = −4a3 − 27b2 ∈ Q .

CLAIM: For any irreducible f ∈ Q[x], Gal(f) = A3 if, and only if, ∆ = x2 for some x ∈ Q;
that is, if and only if δ ∈ Q.
PROOF:

Suppose δ ∈ Q . Then δ is invariant under all π ∈ Gal(f). Hence all elements of
Gal(f) are even. So Gal(f) < A3. Since Gal(f) 6= {(1)} (as f is irreducible), and the only
non-trivial subgroup of A3 is A3 itself, Gal(f) = A3.

Conversely, assume that ∆ is not square in Q, so that δ 6∈ Q . A general fact: if k is the
splitting field of a squarefree f , and γ ∈ k\Q, then ∃σ ∈ Gal

(
k/Q
)

such that σ(γ) 6= γ.
Now, this means that since δ ∈ Q(α1 , α2, α3) and δ 6∈ Q, we have some σ ∈ Gal(f) such
that σ(γ) 6= γ. Hence σ(δ) = −δ, whence σ 6∈ A3. Thus Gal(f) 6< A3, and we conclude that
Gal(f) = S3, as there are no other possibilities.

EXAMPLES:
1. f(x) = x3 − x+ 1 has ∆ = −4 · −1− 27 = −23 6∈ Q2 . So Gal(f) = S3.
2. f(x) = x3 − 3x+ 1 has ∆ = −4 · −27− 27 · 1 = 81 = 92 so Gal(f) = A3.

DEFINITION: We call ∆ the discriminant. Note that ∆ vanishes if, and only if, f has a
repeated root. This makes it very useful.

DEFINITION: We say that Gal(f) acts transitively on the roots of f if

∀αi, αj , i 6= j (∃σ ∈ Gal(f) such that σ(αi) = αj) .

PROPOSITION: Let f be squarefree. Gal(f) acts transitively on the roots of f if, and only
if, f is irreducible.
PROOF:

The converse follows from properties of a splitting field. See Lang’s Algebra for details.
Assume Gal(f) acts transitively on the roots of f . Let f(α) = 0 and set g ∈ Q[x] to be

the minimal polynomial of α. Then there exists some h ∈ Q[x] such that f = gh. Using
transitivity and the fact that 0 = σ(g(α)) = g(σ(α)), we see that all roots of f are roots of
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g. So deg f = deg g (since f is squarefree!). Hence f = cg for some c ∈ Q, and g’s being
minimal means g, and hence f , must be irreducible.

NOTATION: We will write Gal to indicate Gal
(
K/k
)

in what follows.

MAIN THEOREM OF GALOIS THEORY

For any subfield F of K so that k ⊂ F ⊂ K , write

G
(
K/F
) .

= {σ ∈ Gal|σ : K → K is an automorphism, and σ|F= ι} .

For any subgroup H where {(1)} < H < Gal, write

KH .
= {α ∈ K |σ(α) = α ∀σ ∈ H} .

Then H 7→ KH is a bijection of subgroups of G onto subfields F of K . The inverse of this
map is F 7→ G

(
K/F
)
; that is,

H 7→ KH 7→ G
(
K/KH

)
= H.

Furthermore, a subfield F ⊂ K is a splitting field if, and only if, G
(
K/H

)
is normal in Gal,

in which case Gal
(
F/k
) ∼= Gal

(
K/F
)
.

We present the following DIAGRAM as as indication of what is going on here:

K → G
(
K/K

)
= {σ : K → K | σ|K = ι} = {ι}

∪ ∩
F → G

(
K/F
)

= {σ : K → K | σ|F = ι}
∪ ∩
k → G

(
K/k
)

= {σ : K → K | σ|k = ι} = Gal
(
K/k
)

NOTE: This implies that k 7→ G
(
K/k
)
7→ K

G(F/k) = k; that is,{
α ∈ K : σ(α) = α ∀σ ∈ Gal

(
K/k
)}

= k.

So if α ∈ K \k, then there exists some σ such that σ(α) 6= α.

EXAMPLE: Recall that f(x) = x3 − x+ 1 has Gal = S3. Then the diagram becomes

Q(α1 , α2, α3) → {ι}
∪ ∩

F = Q(δ) = Q

(∏
i<j(αi − αj)

)
→ {σ| σ(δ) = δ} = A3

∪ ∩
Q → S3
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RECALL: ∆ = δ2 ∈ Q, so F is the splitting field of x2 −∆. Since F is the splitting field of
an irreducible quadratic, Gal

(
F/Q
)

= S2 =Z /2Z
∼=S3 /A3.

DIAGRAMS: The field extension diagram

Q(α1 , α2, α3)

Q(α1) Q(δ) Q(α2) Q(α3)

Q

corresponds to the subgroup diagram

{(1)}

{(1), (2 3)} A3 {(1), (1 3)} {(1), (2 3)}

S3

Now we consider the purpose of Galois theory, the question of the solvability of a poly-
nomial by radicals. Recall that

(
ax2 + bx+ c = 0

)
⇔
(
x =
−b±

√
b2 − 4ac

2a

)
.

In this vein, we say that a polynomial f is solvable by radicals if its splitting field K is
contained in a field E admitting a tower

k = E o ⊂ E 1 ⊂ · · · ⊂ Em = E

where, for each i, E i = E i−1(αi) where αnii ∈ E i−1 for some ni ∈ N. So E0 = k, E 1 =
k( n1
√
α1), E 2 = k( n1

√
α1,

n2
√
α2), etc., where α1 ∈ k, α2 ∈ k( n1

√
α1), etc.

EXAMPLES:
1. f(x) = ax2+bx+c has splitting field Q(α1 , α2) = Q(

√
b2 − 4ac). The ancient civilizations

knew the quadratic formula, which gives us this.
2. Let f(x) = x3 + ax2 + bx+ c.

Define z = x− a2/3. We get a new polynomial f(x) = z3 + pz + q. Then

Q(α1 , α2, α3) ⊆ Q

(
√

∆,
√
−3,

3

√
−27

2
q +

3

2

√
−2
√

∆

)
.
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The Italian Cardano gave an explicit formula for this during the middle ages.
3. There is also a formula for x4 + ax3 + bx2 + cx + d, but not beyond that, as we show
below.

For the explicit formulas of the cubic and the quartic, we refer the reader to van der
Waerden’s Modern Algebra, second edition, volume 1.

DEFINITION: A group G is solvable if there is a tower of normal subgroups

{ι} = G0 CG1 C · · ·CGm = G

where each Gi/Gi−1 is cyclic.

EXAMPLES:
S2 is cyclic, so it is solvable.
S3 B A3 B {(1)} and S3/A3

∼=Z /2Z, A3/{(1)} ∼=Z /3Z, so it is solvable.
S4 is also solvable, but Sn is not solvable for n ≥ 5. (The clown guilty for this gross

inconvenience is actually An. For details, see an algebra text.)

THEOREM: f is solvable by radicals if, and only if, Gal(f) is solvable.

A proof of the theorem above is beyond the scope of this course. However, note that, from
a computational point of view, when n ≤ 4, the tower of solvable groups tells us how to
find a formula for the roots.

OPEN PROBLEM: Let f ∈ Q[x] have degree n.
We know there exists an algorithm that calculates the generators of the Galois group

of f in exponential time (on n and the bit size of the coefficients of f ). Is there some
algorithm that calculates the generators of the Galois group that has polynomial time?

We do know that we can decide in polynomial time whether the Galois group is solvable.
For this result, see Susan Landau and Gary Miller in Comp. Sys. Sci., vol. 30, 1985.
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