
Notes for MA591U, Spring 2001
(Symbolic Computation)

Differential Galois Theory
Let y(n) +an−1y

(n−1) + · · ·+a0y = f where ai, f ∈ k, a differential field whose constants are
algebraically closed. We want to extend the notion of a splitting field, the Galois group,
and solvability to these types of equations.

EXAMPLES: Problems where k = C (x) with ′ : k → k such that (a + b)′ = a′ + b′ and
(ab)′ = a′b+ ab′.

We will consider the equation

0 = L(y) = y(n) + an−1y
(n−1) + · · ·+ a0y, ai ∈ k.

We want  y1
...
yn


′

=


0 1 0 · · · 0
0 0 1 · · · 0

... . . . ...
0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1


 y1

...
yn


and

y 7→


y
y′

...
y(n−1)

 = Y.

We have L(y) = 0 if, and only if, Y ′ = AY , where A is the square matrix above.

FACT: Even the most general system Y ′ = AY are equivalent, in a certain sense, to L(y) =
0.

LEMMA: Let K be a differential field with constants C. Let A ∈ Mn(K)
.
= Kn×n. Let

V = {y ∈ Kn|y′ = Ay}. Then dimC V ≤ n.
PROOF:

Note that any (n+ 1) vectors of Kn are linearly dependent over K. It suffices to show
that if y1, . . . , yn ∈ V are linearly dependent overK, then they are linearly dependent over
C. Let

t∑
i=1

fiyi = 0.
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Assume (1) f1 = 1 (just divide through if not) and (2) t is the smallest positive integer
such that the above equation holds. Apply y 7→ y′ − Ay. Then we have

0 =
∑
i

(f ′iyi + fiy
′
i)−

(∑
i

fiyi

)
A =

∑
i

f ′iyi +
∑
i

fi (y
′
i − Ayi)

=
∑
i

f ′iyi.

But f ′1 = 0, so by minimality of t it must be that f′2 = · · · = f ′t = 0, which implies that
fi ∈ C. Hence {yi} is dependent over C.

NOTE: This is comparable to saying that a polynomial has at most n roots.

The analog to a splitting field in Differential Galois Theory is a Picard-Vessiot Extension,
which we define as follows:

DEFINITION: Suppose L(y) = 0, with coefficients in k, and there exists a differential field
K such that

(i) constants of K are the same as the constants of k;
(ii) K contains y1, . . . , yn linearly independent solutions of L(yi) = 0;
(iii) K is the smallest differential field containing k and y1, . . . , yn.

Then K is a Picard-Vessiot Extension (PVE) and

K = k(y1, y
′
1, . . . , y

(n−1)
1 , . . . , yn, y

′
n, . . . , y

(n−1)
n ).

Note that y(n)
i =

∑n−1
i=0 aiy

(i) (where y(0) = y).

EXAMPLE: Let k = C (x) and L(y) = 0. Let x0 ∈ C where no denominator of L(y) vanishes.
Then there exist y1, . . . , yn linearly independent over C , and differentiable in a neighbor-
hood of x0 such that L(yi) = 0. (This is the Analytic Existence Theorem.)

In general, we can show that this extension exists, but we are not presently able to con-
struct it.

We can now define the Galois Group of an LDE. Let K be a PVE for L(y) = 0. We write

Gal
(

K/k

) .
= {σ : K→ K|σ is an automorphism, σ(z′) = (σ(z))′, σ|k = ι} .

Let V = {y ∈ K|L(y) = 0}. Observe that V is a vector space over C. If y ∈ V and σ ∈
Gal

(
K/k

)
, then σ(0) = σ(L(y)) = L(σ(y)), so σ(y) ∈ V as well.

Furthermore, σ|V is C-linear, so σ restricts to a linear transformation on V . Select a
basis y1 . . . , yn. Then we can take σ 7→ (cij) ∈ Cn×n. Hence Gal

(
K/k

)
< GLn(C) (the group

of n× n invertible matrices over C).
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DEFINITION: We say that X ⊂ CN is Zariski closed if it is the common zeroes of some
polynomial over C in N variables.

EXAMPLES:
1. Let N = 1. Then {x|p1(x) = · · · = pN(x) = 0} is finite, or it is all of C.

Conversely, any finite set has X = {α1, . . . , αN} = {x|(x− α1) · · · (x− αN) = 0}. So
Zariski closed sets in C(x) are empty, finite, or all of C. Observe that N ⊂ C is not Zariski
closed.
2. Let N = 2. The solution sets in this case are finite unions of curves p(x, y) = 0, finite
sets of points, C, and ∅.

DEFINITION: A linear algebraic group is a Zariski closed subgroup of GLn(C) ⊂ Cn2 ; that is,
it is a subgroup of GLn(C) defined by the vanishing of a set of polynomials in the entries
of the matrices. All previous examples are these kinds of groups.

An example of those that are not: let

GL1(C) = {c|c 6= 0} = C\ {0} .= (C∗, ·).

Zariski closed proper subgroups are finite and cyclic, hence of the form Z/nZ for some
n ∈ N . So consider

{(√
2
)n |n ∈ Z}. This is not Zariski closed, since it is neither finite, nor

is it GL1(C).

BASIC FACT: Gal
(

K/k

)
< GLn(C) is Zariski closed.

EXAMPLE: Let y′ − ay = 0 for some a ∈ k.
Gal ⊆ GL1(C) = C∗.
Either Gal = GL1(C) or Gal is finite.
The only finite subsgroups of C∗ are the nth roots of unity for some n ∈ N . So

Gal =

{
GL1

{ζ : ζn = 1} ∃n ∈ N .

GENERAL FACT: If z ∈ K such that σ(z) = z for all σ ∈ K, then z ∈ k.

To test whether Gal = {ζ : ζn = 1} for some n ∈ N , do the following.
Let y ∈ K be a solution of y′ − ay = 0. Consider yn; if Gal = {ζ : ζn = 1} then

σ(yn) = (σ(y))n = (ζy)n = ζnyn = yn

so yn ∈ k.
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Conversely, if n is the smallest nonzero integer so that yn = u ∈ k, then K = k( n
√
u).

So K is an algebraic extension of k. Then Gal = {ζ|ζn = 1}, since y 7→ ζy gives an auto-
morphism.

Observe that y′ − ay = 0 only if y′/y = a. If ym = u,

u′

u
=

(ym)′

ym
=
my′

y
= ma.

So to test for a Galois group, the group is finite if there is some m such that u′ −mau = 0
has a rational solution. It equals {ζ|ζm = 1} where m is the smallest such integer. It is, on
the other hand, GL1 if there is no such integer.

To do this, one can modify the algorithm we explored earlier to find rational solutions
to LDEs.

EXAMPLE:
y′ − 1

3x
y = 0

has m = 3 ∈ Z giving a rational solution to

y′ − m

3x
y = 0.

This is also the smallest such integer.

EXAMPLE: One can homogenize y′ = f (which has solution y =
∫
f ) as y′′ − (f ′/f)y′ = 0

(which has solutions y ∈
{∫

f, 1
}

). Since the latter is homogeneous, the PVE is K =
k(1,

∫
f). Let σ ∈ Gal. We know that σ(1) = 1 and [σ(

∫
f)]′ = σ((

∫
f)′) = σ(f) = f . So

σ(
∫
f) and

∫
f differ by a constant. Hence σ(

∫
f) =

∫
f + cσ for some cσ ∈ C. In the basis{

1,
∫
f
}

of the solution space,

σ =

{
1 cσ
0 1

}
.

So

Gal <

{(
1 c
0 1

)
|c ∈ C

}
.

Hence the only algebraic subgroups are {I} and
{(

1 c
0 1

)
|c ∈ C

}
itself. We have Gal =

{I} if, and only if,
∫
f ∈ k. We need to see if y′′ − (f ′/f)y′ = 0 has a two-dimensional

solution space in k. If k = Q(x), we can do this.

MAIN THEOREM OF GALOIS THEORY:
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LetK be a PVE of k associated with L(y) = 0. There is a bijective correspondence between
algebraic subgroups H of Gal

(
K/k

)
and differential subfields F, with K ⊃ F ⊃ k:

{algebraic subgroups} ↔ {subfields}
H ↔ KH = {y ∈ K|σ(y) = y ∀σ ∈ H}

Gal
(

K/F
)

= {σ|σ(y) = y ∀y ∈ F} ↔ F

Furthermore, H CGal
(

K/k

)
if, and only if, KH is a PVE.

EXAMPLE: Again let y′ − ay = 0 and assume Gal = GL1. We have

K = K(y) ↔ {1}
∪ ∩

k(ym) ↔ {ζ|ζm = 1}
∪ ∩
k ↔ C∗

where (ym)′ −maym = 0.

We now turn to the issue of solvability.

DEFINITION: Let F ⊃ k be differential fields. We call L a Liouvillian Extension of k if there
is a tower

F = Fm ⊃ · · · ⊃ F0 = k

such that Fi = Fi−1(ti) where either ti is algebraic over Fi−1, t′i ∈ Fi−1 (which implies
that ti =

∫
ui for some ui ∈ Fi−1), or t′i/ti ∈ Fi−1 (which implies that ti = e

R
ui for some

ui ∈ Fi−1).
A differential equation is said to be Liouvillian if its PVE lies in a Liouvillian extension

of k.

THEOREM: Suppose K is the PVE of k corresponding to L(y) = 0. Let G = Gal
(

K/k

)
. It

turns out that L(y) = 0 is Liouvillian if, and only if, there is some normal subgroup H of
G with [G : H] <∞, and H solvable.

For k = Q (x), this is decidable! For n = 2, Kovacic determined this in 1978. For n ≥ 2,
Singer published a result in the American Journal of Mathematics, in 1980.
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